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Convection in a compressible fluid with an imposed vertical magnetic field is studied 
numerically in a three-dimensional Cartesian geometry with periodic lateral boundary 
conditions. Attention is restricted to the mildly nonlinear regime, with parameters 
chosen first so that convection at onset is steady, and then so that it is oscillatory. 

Steady convection occurs in the form of two-dimensional rolls when the magnetic 
field is weak. These rolls can become unstable to a mean horizontal shear flow, which 
in two dimensions leads to a pulsating wave in which the direction of the mean flow 
reverses. In three dimensions a new pattern is found in which the alignment of the 
rolls and the shear flow alternates. 

If the magnetic field is sufficiently strong, squares or hexagons are stable at the onset 
of convection. Both the squares and the hexagons have an asymmetrical topology, 
with upflow in plumes and downflow in sheets. For the squares this involves a 
resonance between rolls aligned with the box and rolls aligned diagonally to the box. 
The preference for three-dimensional flow when the field is strong is a consequence of 
the compressibility of the layer - for Boussinesq magnetoconvection rolls are always 
preferred over squares at onset. 

In the regime where convection is oscillatory, the preferred planform for moderate 
fields is found to be alternating rolls - standing waves in both horizontal directions 
which are out of phase. For stronger fields, both alternating rolls and two-dimensional 
travelling rolls are stable. As the amplitude of convection is increased, either by 
decreasing the magnetic field strength or by increasing the temperature contrast, the 
regular planform structure seen at onset is soon destroyed by secondary instabilities. 

1. Introduction 
The original motivation for studying the interaction between magnetic fields and 

convection came from astrophysics. Sunspots, and starspots, are dark because normal 
convection is impeded by a strong magnetic field. High-resolution observations, 
coupled with theoretical advances, are gradually leading to a clearer understanding 
of convective transport both in the dark umbra of a sunspot, where the magnetic 
field is essentially vertical, and in the filamentary penumbra, where the field is 
inclined (Thomas & Weiss 1992). Meanwhile, magnetoconvection has become an 
important topic in its own right, as a prototype of double-diffusive behaviour. The 
competition between a superadiabatic thermal stratification and the stabilizing effect 
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of the magnetic field gives rise to a rich variety of spatiotemporal behaviour. Since 
the Lorentz force is quadratic, magnetoconvection exhibits an even wider range of 
solutions than thermosolutal or binary convection, or convection in a rotating system. 
Slow magnetoacoustic oscillations can be thermally excited, yielding both travelling 
and standing waves, while shearing instabilities lead to travelling, modulated and 
pulsating waves (Weiss 1991; Proctor 1992; Matthews et al. 1993). It is fortunate that 
recent developments in nonlinear dynamics have made it possible for us to analyse 
the competition between different planforms and patterns of time-dependent motion. 

Early investigations of magnetoconvection employed the Boussinesq approximation. 
Linear theory shows that behaviour depends critically on the ratio, (, of the magnetic 
to the thermal diffusivity: if < > 1 convection appears as a direct instability (at a 
pitchfork bifurcation) giving rise to steady motion, but if < < 1, as at the surface of 
the Sun, and the field is sufficiently strong then convection sets in as an oscillatory 
instability (at a Hopf bifurcation) leading to periodic solutions (Chandrasekhar 1961). 
In two dimensions, with mirror-symmetry imposed at the lateral boundaries, the 
oscillations take the form of standing waves; nonlinear interactions between standing 
waves and steady solutions have been thoroughly investigated, using a combination 
of analytical and numerical techniques (Proctor & Weiss 1982). Once the lateral 
boundary conditions are relaxed, both standing waves and travelling waves appear 
together at the oscillatory bifurcation and weakly nonlinear theory can be used to 
determine which solution is preferred (Matthews & Rucklidge 1993). Numerical 
experiments on two-dimensional compressible magnetoconvection have revealed a 
variety of steady and time-dependent patterns of behaviour (Hurlburt & Toomre 
1988; Hurlburt et al. 1989; Weiss at al. 1990; Proctor et al. 1994; Brownjohn et 
al. 1995). Stable travelling waves can appear either at the initial bifurcation or in a 
secondary bifurcation, where the mirror-symmetry of steady rolls is broken. In the 
latter case, shearing instabilities may develop to yield a pulsating wave (Matthews et 
al. 1993). 

It is not obvious which features - if any - of two-dimensional convection will sur- 
vive once three-dimensional perturbations are admitted. Turbulent Rayleigh-Benard 
convection in a three-dimensional compressible layer has already been simulated 
with considerable success (Stein & Nordlund 1989; Cattaneo et aE. 1991) and the 
computational results bear a close resemblance to images of the solar granulation 
(Spruit, Nordlund & Title 1990). In this paper we embark on a systematic study 
of three-dimensional compressible magnetoconvection. Once again we follow the 
approach that has proved successful in two-dimensional investigations. Different 
patterns of nonlinear behaviour are isolated through numerical experiments in an 
idealized configuration with widely varying parameters. We begin near the initial 
bifurcation, where computations can be compared with linear and weakly nonlinear 
analytical results, and explore behaviour as the relevant instability parameter (the 
Rayleigh number) is progressively increased. This gradual but systematic approach 
differs from other, more ambitious simulations of turbulent magnetoconvection (e.g. 
Brandenburg et al. 1990; Nordlund & Stein 1990; Nordlund et al. 1992; Vainshtein 
et al. 1993; Nordlund, Galsgaard & Stein 1994). 

We shall be concerned here only with mildly nonlinear behaviour in a shallow 
stratified layer. Our aim is to exhibit, classify and relate the different planforms 
that arise for steady and periodic magnetoconvection. We do find stable two- 
dimensional rolls - as steady solutions and travelling, modulated or pulsating waves 
- but there is also a new range of three-dimensional solutions. In addition, we study 
transitions between different spatiotemporal patterns in the nonlinear regime. These 
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transitions can only be described if computations are related to low-order model 
systems, comprising a limited number of coupled nonlinear ordinary differential 
equations. Such low-order models, whether normal form equations or more arbitrary 
evolution equations, can be solved precisely and then interpreted in terms of nonlinear 
dynamics. They are an essential tool in analysing the numerical results; without recent 
developments in bifurcation theory it would be impossible to make sense of the many 
solutions that are found. 

In what follows we shall describe and illustrate the different planforms and types 
of time-dependent behaviour that appear as the relevant parametcrs are varied over 
a wide range. Computations will be carried out in domains which are either square 
or rectangular in the horizontal plane and have periodic boundary conditions. We 
shall also analyse transitions from one spatiotemporal pattern to another. Three- 
dimensional runs are much more difficult to analyse than two-dimensional results, 
which can be fully represented on a plane. Time-dependent solutions are best 
displayed as colour videos, which not only make it possible to interpret the numerical 
output but also provide an effective means of presenting the results to any audience. 
We have prepared a video for use at meetings (Matthews 1993, 1994; Matthews et al. 
1994; Weiss 1994) but we shall rely here on monochromatic images that have been 
carefully selected. 

The paper is organized as follows. The governing equations are introduced in 
the next section, together with the geometry, boundary conditions and parameters 
that define our model problem. The numerical methods are discussed in $3. Results 
obtained with a diffusivity ratio i = 1, so that the initial bifurcation leads to steady 
convection, are presented in $4. Here we describe the competition between rolls and 
squares (in cells with a square planform) and that between rolls and hexagons (in 
rectangular cells), together with two- and three-dimensional streaming instabilities 
and different types of pulsating wave. Next, in $5, we give results for = 0.1, 
so that oscillatory behaviour appears at onset. Here we find both two-dimensional 
travelling rolls and three-dimensional alternating rolls in the nonlinear regime. In the 
final section we discuss the implications of these results and their relation to parallel 
investigations, and we conclude by indicating directions for future work. 

2. Equations for compressible magnetoconvection 
Our mathematical model for compressible magnetoconvection consists of a hori- 

zontal layer of compressible fluid permeated by a vertical magnetic field. We assume 
that the heat capacities cp and cv, the thermal conductivity K ,  the viscosity p ,  the 
magnetic diffusivity q,  the permeability po and the acceleration due to gravity g are 
all constant. The model is identical to that used in the two-dimensional calculations 
of Hurlburt et al. (1989). 

Dimensionless variables are introduced by scaling length with the depth of the 
layer d ,  temperature with the fixed temperature To at the upper surface, density with 
the density po at the upper surface in the absence of convection, and magnetic field 
with the strength of the initial vertical magnetic field, Bo. For the time unit we use the 
isothermal sound travel time at the top of the layer, ~/(R.TO)~’’ where R. = cp - c, 
is the gas constant; this is equivalent to scaling the pressure to be unity at the top of 
the layer in the static state. This scaling for time is slightly different from that used 
by Hurlburt et al. (1989). 

This non-dimensionalization introduces a number of dimensionless parameters to 
the problem. These are: the Prandtl number, o = pc,/K; the ratio of magnetic 
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Symbol Parameter Values used 

Prandtl number 
mid-layer magnetic diffusivity 
polytropic index 
thermal stratification 
ratio of specific heats 
dimensionless conductivity 
dimensionless field strength 
Rayleigh number 
Chandrasekhar number 
length of box in x-direction 
length of box in y-direction 

0.1 
0.1 and 1.0 
0.25 
6 

variable 
variable 
variable 
variable 
variable 
variable 

513 

TABLE 1. Parameters for the problem and values used in the computations 

to thermal diffusivity at the top of the layer, <O = y c p p O / K ;  the polytropic index, 
m = gd/R,AT-1 where A T  is the temperature difference between the top and bottom 
of the layer; the dimensionless temperature difference tJ = AT/To; the ratio of specific 
heats y = c,/c,; the dimensionless thermal diffusivity IC = K/dpoc,(R, TO)”’; and the 
dimensionless field strength F = B;/R* TO~O,UO, which is twice the ratio of the magnetic 
pressure to the gas pressure at the top of the layer. 

A number of secondary parameters can be derived from the seven dimensionless 
numbers above. The Chandrasekhar number, relating the strength of the magnetic 
field to diffusion, is 

and is independent of depth. The following quantities depend on depth, and for 
these we will use their mid-layer values. An alternative measure of the magnetic field 
strength is the ‘plasma beta’ p, the ratio of gas pressure to magnetic pressure, 

Q = F/SOUIC*, (2.1) 

m+ 1 

8=2(1+ ; )  1; . 

The Rayleigh number, representing the ratio of the destabilizing superadiabatic 
temperature gradient to the stabilizing effects of thermal and viscous diffusion is 

Since the ratio of magnetic to thermal diffusivity is also a function of z ,  it is convenient 
to define a mid-layer value, [ = lo( 1 + 8/2)”. 

We choose axes (x, y, z )  so that the z-axis points vertically downwards. The lengths 
of the periodic box in the x- and y-directions are denoted by I ,  and ,Iy. The primary 
and secondary parameters, and the values used in the computations are given in 
table 1. 

The equation for conservation of mass is 

a P  
- = -v * ( p u )  
dt  (2.4) 

where p is the fluid density and u is the fluid velocity. The momentum equation is 

a 
- (PU) = -V(P + FB2/2 )  + V * (FBB - ~ U U  + U K ~ )  + 8(m + 1 ) p i  (2.5) at 



Compressible magnetoconvection in three dimensions 285 

where B is the magnetic field, P is the pressure and z is the stress tensor, 

The induction equation is 

o’B 
o’t 
- = v x (u x B - (0“ v x B )  

and the heat equation is 

dT Y“ 2 “(Y - 1) (&,2 + F l o p )  - = -U * V  T - (7 - 1) T V * u  + -V T + ~ 

a t  P P 

where T is the temperature and J = V x B. The terms in (2.8) represent temperature 
changes due to advection, compression, diffusion, viscous heating and Joule heating 
respectively. The pressure P is given by the equation of state 

P = p T  (2.9) 

and the magnetic field is solenoidal, 

V . B = O .  (2.10) 

This last condition, together with (2.7), implies that the magnetic flux through any 
horizontal surface, J BZ dx dy, is independent of z and t. 

We choose boundary conditions that are simple and consistent with previous work, 
rather than trying to construct more elaborate boundary conditions that might be 
more appropriate for the Sun. All variables are assumed to be periodic in the 
horizontal directions. The boundary conditions imposed at the upper and lower 
surfaces of the layer are that the normal velocity and horizontal shear stress are zero, 
that the temperature is fixed and that the magnetic field is vertical. 

The equations (2.4)-(2.10) have a stationary polytropic solution in which u = 0, 
B = 2, T = 1 + Oz, p = (1 + O Z ) ~  and P = (1 + U Z ) ~ + ’ .  This state was used as the 
initial condition, with a small random perturbation added to the temperature field. 

The Boussinesq equations can be obtained from the fully compressible equations 
(2.4)-(2.10) by taking the limit 0 + 0 with F - U2, K - 8. In this limit the rate of 
change of convective modes scales with U while the sound speed remains of order 1. 
Thus it is numerically difficult to approach the Boussinesq limit since for small 6’ most 
of the computational effort is expended on tracking sound waves while the convective 
modes evolve slowly. 

We end this section with a brief summary of linear stability theory. Further details 
can be found in Hurlburt et al. (1989). The magnetic diffusivity ratio ( is particularly 
important. If 5 is small, the magnetic field is wound up by the convection, and the 
resulting Lorentz force becomes large enough to reverse the motion. This leads to 
oscillatory convection, provided that the magnetic field strength is sufficiently large. 
If ( is large, the magnetic field can ‘slip’ through the fluid, allowing convection to be 
steady. In both the steady and oscillatory cases, increasing the magnetic field strength 
has three effects: (a)  the magnetic field resists convection, so a larger Rayleigh number 
is required before convection occurs, and beyond a certain field strength convection 
will not occur for any Rayleigh number; (b )  the preferred width of convection rolls 
narrows; ( c )  the increasing magnetic pressure leads to greater fluctuations in density 
and hence a greater departure from the Boussinesq approximation. 
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3. Numerical methods 
The equations are solved by an extension and modification of the mixed finite- 

difference/pseudospectral code of Cattaneo et al. (199 1) for compressible convection 
with no magnetic field. Differentiation is carried out by a spectral method using 
fast Fourier transforms in the periodic x- and y-directions. Spectral methods are 
very much more accurate than finite-difference methods for problems with periodic 
boundary conditions when the solutions are smooth (Canuto et al. 1988). Close to the 
onset of convection, it is known that the behaviour is governed by a small number 
of Fourier modes in the horizontal directions. In the vertical direction, the code uses 
an explicit fourth-order finite-difference method. 

The equations for conservation of mass, momentum and magnetic field are written 
in conservative form, ensuring that mass, momentum, the average vertical component 
of the magnetic field and the divergence of the magnetic field are conserved to 
machine precision. 

The time integration uses the explicit, second-order Adams-Bashforth method. The 
choice of time-step is restricted by stability constraints relating to the diffusion lime 
and the wave travel time over a mesh interval. These two limits were found to be 
similar in magnitude. 

For the mildly nonlinear convection in the range explored in this paper, a fairly 
low resolution is sufficient. Most of the results were obtained using 16 points (8 
complex Fourier modes) in the x- and y-directions, and 25 points in the z-direction. 
Higher resolution was used in the z-direction because the finite-difference method is 
less accurate than the spectral method. To test the accuracy of the discretization, a 
number of runs were carried out with only 12 points in the x- and y-directions, and 
17 points in the z-direction. These were found to agree with the higher-resolution 
results to within about 5%. The code was also checked against the two-dimensional 
results of Hurlburt et al. (1989). 

The calculations were carried out using Sun and HI? workstations and the Convex 
supercomputer at ULCC. 

P. C. Matthews, M .  R. E.  Proctor and N. 0. Weiss 

4. Steady magnetoconvection and secondary bifurcations (c = 1) 
We now describe in detail the results of our numcrical simulations. In order to 

focus attention on the magnetic field, and for the purposes of comparison with earlier 
work, the parameters governing the polytropic atmosphere were fixed at y = 5/3, 
m = 1/4, 8 = 6. This means that while the temperature increases by a factor of 
7 across the layer and the pressure contrast is 11.4, the density contrast is only 
1.63. The choice of m = 1/4 gives a temperature gradient that is twice the adiabatic 
temperature gradient. The Prandtl number cr was fixed at 0.1. These parameters are 
the same as those used by Hurlburt et al. (1989) and Proctor et al. (1994) in their 
two-dimensional calculations. The other parameters of the problem, including the 
Rayleigh number R, the ratio of gas pressure to magnetic pressure f i  and the magnetic 
diffusivity ratio 5 were allowed to vary in order to explore several different regimes 
of magnetoconvection. 

Our results are divided into four sections. Steady convection is investigated by 
setting = 1. We first set A, = A,, allowing a planform of rolls or squares. In 54.1 
the weak field case is explored, where we find that rolls are preferred at onset but 
become unstable to a streaming instability. In the strong field regime ($4.2) squares 
are stable. To allow a hexagonal planform, a rectangular geometry with A, = 8 2 ,  
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I , , 
128 64 32 16 

P 
FIGURE 1. Steady magnetoconvection, [ = 1.0. Circles - stable rolls, triangles - rolls plus steady shear 
flow, crosses - rolls plus periodic shear flow, asterisks - pulsating waves, plus signs - alternating 
pulsating waves, squares - squares. The solid and dashed lines are the linear stability boundaries 
for wavenumbers k = 2n and k = 2 4 n .  

is considered in $4.3. Oscillatory convection is studied by setting ( = 0.1, in 95. In the 
oscillatory case, we restrict attention to the case 1, = A,. 

4.1. WeakJields with A, = A y :  rolls and their instabilities 
To interpret the results it is important to consider which wavenumbers can occur in 
the periodic box. For two-dimensional convection in a periodic box of length A,, the 
possible wavenumbers are simply 2n71/1,. In three dimensions however, rolls need not 
be aligned with the axes, and the possible wavenumbers in a square box (A, = A,) are 
2z(n2 + m2)'/2/A, for any integers n, m, corresponding to a planform with horizontal 
dependence sin((nx+my)2n/iL,). For example, if A, = ,Iv = 1, rolls with wavenumber 
271 aligned with the axes or rolls with wavenumber 2,,bn aligned diagonally are both 
allowed. 

Figure 1 shows the linear stability curves for the onset of steady convection 
as a function of the Rayleigh number R and the field strength parameter 1, for 
wavenumbers k = 2n and k = 2471.  These results were obtained using the linear 
code of Cattaneo (1984), and several points on the curves were checked using a 
two-dimensional version of the fully nonlinear code. The Rayleigh number is varied 
by adjusting the dimensionless diffusivity K .  Therefore the vertical coordinate in 
figure 1 should be thought of as an inverse measure of the diffusion coefficients in 
the momentum, induction and heat equations, not as a measure of the temperature 
gradient. 

Two regimes are clearly apparent in figure 1. When the field is weak, convection 
is resisted by thermal and viscous diffusion and the magnetic field is essentially 
passive. For stronger fields, convection is resisted by the magnetic field, and for 
each wavenumber there is a critical field strength beyond which convection cannot 
occur for any Rayleigh number. In this second region, convection occurs in narrower 
cells. This is apparent from the crossing of the linear stability curves in figure 1. 
As the diffusion coefficients are decreased, so that R and Q increase? the preferred 
wavenumber increases but the maximum field strength does not increase significantly. 
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1.x B R Result 

1.0 128 4300 2D rolls 
1.0 128 5000 2D rolls + steady shear flow 
1.0 128 5500 2D rolls + periodic shear flow 
1.0 128 7000 2D pulsating wave 
1.0 128 10000 3D alternating pulsating wave 
1.0 64 7000 2D rolls 
1.0 64 10000 2D rolls + steady shear flow 
1.0 64 15000 2D rolls + periodic shear flow 
1.0 48 10000 2D rolls 
1.0 48 20000 2D rolls 
1.0 48 30000 3D squares at top, rolls at bottom 
1.0 38 12000 2D rolls 
1.0 32 20000 3D squares 
1.0 32 30000 3D squares 
1.0 26 30000 3D squares 
1.0 28 60000 3D squares 
1.0 23.5 60000 3D subcritical squares 
1.0 28 100000 3D squares 
1.0 23 100000 3D subcritical squares 

2.0 128 2000 2D rolls 
2.0 128 2500 2D rolls + steady shear flow 
2.0 56 3700 3D squares 

TABLE 2. Summary of runs for steady convection with ix = I?. Note that the results for the two 
different aspect ratios are not directly comparable, as the critical Rayleigh numbers are different 
(cf. figure 1) 

For weak fields, convection with a wavenumber of 277 is preferred over convection 
with a wavenumber of 2$n, but for stronger fields convection with the larger 
wavenumber is preferred. Thus if we fix A, = 1, a change of scale will occur as the 
field strength is increased, from convection cells with wavenumber 271 aligned with 
the box, to cells with wavenumber 28. aligned diagonally with the box. 

Most runs were carried out with I ,  = 1, so that the box is a cube and the convection 
cells are twice as tall as they are wide. This is appropriate for convection in a strong 
field, but forces the cells to be narrower than their preferred wavelength when the 
field is weak. To check whether this has any qualitative influence on the behaviour, a 
few runs were carried out with A, = 2 for large values of p. Table 2 summarizes the 
results of the calculations for steady magnetoconvection with = 1 and I ,  = A,. The 
results with A, = I ,  = 1 are shown in figure 1. 

For A, = Ay = 1 and p = 128 the critical Rayleigh number is 3790. As the Rayleigh 
number is increased, the following behaviour is observed. At R = 4300, convection 
takes the form of steady, symmetric two-dimensional rolls. A symmetry-breaking 
pitchfork bifurcation then occurs, and at R = 5000 convection takes the form of a 
slowly travelling wave with a steady, mean shear flow. This behaviour is shown in 
figure 2;  the shear flow leads to tilted cells, and enhances the cell that has a vorticity 
in the same sense as the shear flow. To quantify the shear flow we use the ratio of 
the mean flow at the top of the layer to the r.m.s. velocity; this ratio has the value 
0.17 for the solution shown in figure 2. 

This instability to a mean shear flow has been analysed for the non-magnetic case 
by Howard & Krishnamurti (1986) and Prat, Massaguer & Mercader (1995), for a 
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FIGURE 2. Instability of two-dimensional rolls to steady shear flow. The arrows show instantaneous 
streamlines and the shading is proportional to the density. There is a net shear flow to the right at 
the top of the layer and to the left at the bottom, giving rise to a travelling wave that drifts to the 
right at speed u = 0.019. The maximum value of the horizontal velocity is 0.42, and the mean flow 
has a maximum of 0.11, Parameters are [ = 1, p = 128, R = 5000. 

vertical magnetic field by Proctor et ul. (1994) and Matthews et al. f1993), and for 
a horizontal field by Lantz (1995). Physically, convection rolls can be unstable to a 
shear flow because the shear flow causes the rolls to tilt, while tilted rolls transport 
horizontal momentum to the top and bottom of the layer in such a way as to enhance 
the shear flow. 

At R = 5500, the system has undergone a Hopf bifurcation to modulated waves, 
and makes an oscillation about the sheared state. The ratio of mean flow to r.m.s. flow 
varies between 0.06 and 0.36 during the oscillation. As R increases, this oscillation 
increases in amplitude, and when R = 7000, it has collided (along with its mirror 
image) with the steady untilted roll solution at a global bifurcation, creating a large- 
amplitude oscillation in which the direction of the shear flow reverses periodically. 
The maximum mean flow ratio is now 0.63. Further details of this ‘gluing’ bifurcation 
can be found in Rucklidge & Matthews (19954. This two-dimensional behaviour 
is referred to as a pulsating wave; it has symmetry under a reflection in a vertical 
plane and an advance of half a period in time. Pulsating waves and the bifurcations 
which lead to their formation are described in more detail by Matthews et al. 
(1993) and Proctor et al. (1994); the sequence of bifurcations found in the numerical 
experiments can be reproduced in a fifth-order truncated model. The pitchfork and 
Hopf bifurcations are found also in Binard convection (Howard & Krishnamurti 
1986). The global bifurcation, which may be homoclinic or heteroclinic, is extremely 
complicated (Rucklidge & Matthews 1995u), and may or may not lead to a pulsating 
wave. The presence of a magnetic field facilitates reversals in the shear flow, since the 
shear flow stretches out the magnetic field leading to a strong restoring force. 
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When R is increased to 10000, the behaviour becomes three-dimensional and a 
more complicated sequence occurs. The initial behaviour is the same as at R = 7000, 
with steady two-dimensional convection in the x-direction becoming unstable to a 
pulsating wave in which the shear flow reverses direction. The shear flow is now more 
vigorous (the maximum ratio of shear flow to r.m.s. velocity is now 0.90) and is very 
effective at suppressing convection in the x-direction. However, convection in the 
y-direction is not affected by the shear flow. This allows convection in the y-direction 
to grow exponentially, and after several complete cycles of the oscillation, convection 
in the y-direction takes over, These y-rolls then become unstable to the shearing 
instability and the above sequence is repeated. This novel consequence of the shear 
flow instability, whereby the mean flow suppresses the rolls and leads to orthogonal 
rolls, was not found in earlier studies of the instability, which have restricted attention 
to two dimensions. We will refer to this new behaviour as an ‘alternating pulsating 
wave’. We note that the mechanism for its generation described above does not 
depend on the magnetic field or the compressibility of the layer; therefore we expect 
that alternating pulsating waves may also be found in Rayleigh-Benard convection 
(Matthews et al. 1996). 

A clearer form of alternating pulsating wave was found near the branch of unstable 
steady solutions which exists with = 0.1 for weak fields, and this solution is shown 
in figure 3. With p = 1024 and R = 6000 = 1S&, symmetric convection in the 
x-direction (figure 3a) becomes unstable to a shear flow (figure 3b). This shear flow 
suppresses convection and decays, allowing convection in the y-direction to grow 
(figure 3c,d). This in turn becomes unstable to a shear flow in the y-direction, and so 
on, so the behaviour is periodic and figure 3 shows 1/4 of the complete cycle. The 
periodic solution has a symmetry under rotation through 90” and an advance of 1/4 
of a time period. This run was carried out as a three-dimensional extension of the 
case studied by Proctor et al. (1994). Further details of the dynamics associated with 
this shearing instability in two and three dimensions will be discussed in a future 
work (Rucklidge & Matthews 199%). 

To investigate whether the appearance of this shearing instability is enhanced by 
the fact that we are choosing A, to be smaller than the preferred cell width, some 
runs were carried out with i, = ,Ij = 2.0. For p = 128 the critical Rayleigh number 
is 1210 (instead of 3790). Steady rolls were found to be stable at R = 2000; however, 
a steady shear flow was found at R = 2500 (instead of 5000). The ratio of the shear 
flow to the r.m.s. flow is 0.51 in this case. With Ax = ,Iy = 4.0, p = 128 and R = 2500, 
the shear flow oscillates, without reversing, and the maximum ratio is 0.42. Therefore 
we can conclude that the occurrence of the shear flow instability is not an artefact of 
the narrow boxes used in the runs described above. 

4.2. Strongfields: squares and 8 : 1 resonance 
For stronger magnetic fields, squares were found to be stable (see figure 1 and table 2); 
squares were found to be preferred to rolls for all field strengths greater than p = 32. 
Unlike squares normally found in Boussinesq convection problems, these squares have 
an up-down asymmetry and a ‘hexagon-like’ topological structure: the rising fluid is 
confined to an isolated plume, and the downflow occurs in sheets around the edges 
of the cell. The velocity and density for this asymmetric square solution are shown in 
figure 4. Similar asymmetric squares have been observed in convection experiments 
using syrup with a temperature-dependent viscosity (White 1988). 

This behaviour can be understood by the use of a low-order model. The predom- 
inant Fourier modes of these squares suggest that their horizontal dependence can 
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FIGURE 3. An alternating pulsating wave, ( = 0.1, R = 6000, /I = 1024. Shading is proportional to 
density and the arrows indicate the direction and magnitude of the flow. The frames show 1/4 of 
the complete cycle and are separated by 1/12 of the period. 

be described by the planform function h(x, y )  = A cos kx + B cos k y  + C cos kx cos ky ,  
with A = B. Convection of this form was first proposed by Drobyshevski & Yuferev 
(1974) in the context of topological pumping of magnetic fields. This form of convec- 
tion arises naturally from a resonance between modes A and B with wavenumber k ,  
aligned with the box, and mode C with wavenumber k$. In the neighbourhood of 
the point where the two linear stability curves in figure 1 cross, these are the dominant 
modes and they have similar growth rates. A full analysis of this ,@ : 1 resonance will 
be presented in a future paper (Proctor & Matthews 1996), and has some similarities 
with the 2 : 1 resonance studied by Jones & Proctor (1987). This analysis involves 
four complex equations, but these equations have a third-order invariant subspace in 
the modes A, B and C, with the amplitude equations 

A = p A  + 6BC + . . ., 
B = pB + 6AC + . . . , 
c = vc + ~ A B  + ..., 

where the dots indicate terms of cubic or higher order. This subspace is attracting if 
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FIGURE 4. Steady squares, with f l  = 28, R = 30000. 

67 > 0. Here ,u and v are parameters related to R and p, while y and 6 are constants 
related to the up-down asymmetry of the layer. The quadratic resonant terms in these 
amplitude equations can only occur for a non-Boussinesq fluid, since in the Boussinesq 
case there is up-down symmetry which implies symmetry under a sign change of any 
mode. Analysis of (4.1)-(4.3) shows that if 6 and y have the same sign then rolls can 
become unstable and stable asymmetric squares (represented by a combination of A, 
B and C) can occur subcritically, i.e. when ,u and v are both negative. This latter 
possibility appears to be the case in our numerical simulations: for R = 60000 and 
for R = 100000, stable squares were found for subcritical values of p. In each case, 
the maximum value of p for which squares could be found was 3% below critical. 

This preference for three-dimensional flow at the onset of convection is a conse- 
quence of the stratification of the layer. As the magnetic field strength is increased, 
progressively larger density fluctuations are induced by magnetic pressure. Thus the 
degree of departure from the Boussinesq approximation increases, and hence the 
resonant quadratic terms 6 and y in the amplitude equations (4.1)-(4.3) also increase. 
For Boussinesq magnetoconvection, rolls are always preferred over squares (Clune & 
Knobloch 1994). When the stratification of the layer was reduced by decreasing 8 to 
1 and raising p to 376, with R = 20000, it was found that rolls are stable at onset. 

Near the boundary between the region of stable rolls and stable squares a mixed 
mode was found which has the form of squares at the top of the layer and rolls at the 
bottom. Figure 5 shows this solution, for p = 48, R = 30000. This mixed mode can 
also be found in the low-order model described above (Proctor & Matthews 1996). 
Physically, this behaviour can be understood in terms of stratification of the layer. 
At the bottom of the layer the pressure and sound speed are greater than at the top, 
so the fluid there is closer to the Boussinesq limit. By the argument in the previous 
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FIGURE 5.  A steady solution with a square pattern at the top of the layer and rolls at the bottom. 
Parameters are fl = 48, R = 30000. 

paragraph, a solution with rolls at the bottom of the layer and squares at the top 
might be expected. 

Squares can also become unstable to a weak form of the shear flow instability 
described in $4.1 above. For p = 38 and R = 30000, a weak oscillatory shear flow 
occurs, leading to square cells with a slight tilt. This shear flow is aligned with the 
box, and the ratio of the mean flow to the r.m.s. flow has a maximum value of 
0.05. Increasing the Rayleigh number to 40000 gives a steady shear flow of similar 
magnitude but aligned diagonally to the box. Note that this shear flow is much 
weaker than that found for rolls, so it only produces a small perturbation to the 
square planform. The resulting pattern travels slowly in the direction of the shear 
flow at the top of the layer. 

The same transition from rolls to squares as the magnetic field strength is increased 
was observed for the wider aspect ratio, ,IA = Ab = 2. For p = 128 and R = 2000, 
rolls are stable, but for p = 56 and R = 4000, stable squares were found, with the 
same topological structure as described above. 

It cannot be denied that the observed planforms are strongly influenced by the 
aspect ratio chosen. However we see no reason why stable squares should not persist 
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2, P R Result 

4.4 110 1920 rolls with oscillation 
4.4 110 1575 rolls with oscillation 
4.4 110 1382 rolls 
4.4 110 1319 rolls 
4.4 110 1281 rolls 
2.0 34 20000 ‘up’ hexagons with oscillation 
2.0 30 20000 ‘up’hexagons 

TABLE 3. Summary of runs for steady convection with Ax = ,/?A, 

even if the computational domain were very large. Indeed, White’s (1988) experiments 
demonstrate the existence of stable asymmetric squares in boxes of large aspect ratio. 

4.3. Steady magnetoconvection with I., = 81,: rolls and hexagons 

h(x,y) = c o ~ k x + c ~ ~ - ( y ~ - - x ) + c o ~ ~ ( y z j ? + x )  k k 

The hexagonal planform function can be written as 

(4.4) 2 
k $k 
2 

= cos k x  + 2 cos -X cos T y .  (4.5) 

Hexagons can be thought of as three sets of rolls aligned at 60”, and hexagons with 
wavenumber k can be obtained in a rectangular box if we choose I x  = 4n/k and 
A,, = 4 n / d k .  However, this choice of I ,  and 1, also allows rolls aligned in the 
x-direction with wavenumbers k/2, k and 3 k / 2 ,  and rolls aligned in the y-direction 
with wavenumbers 8 k/2. In order to ensure that the preferred wavenumber is the 
wavenumber k which allows the hexagonal planform, the value of 1, must be chosen 
with care. For a given value of the field strength p, k was chosen to minimize the 
critical Rayleigh number. This ensures that the nonlinear behaviour will be governed 
by modes with wavenumber k, allowing either the hexagonal or roll planforms. The 
results for this case are summarized in table 3. 

For steady non-Boussinesq convection, in which there is no symmetry under reflec- 
tion in z = 1/2, hexagons will always occur at onset (Golubitsky, Swift & Knobloch 
1984). This is because of the asymmetry between ‘up’ hexagons (with the flow di- 
rected upwards at the centre of the hexagons and downward around the edges) and 
‘down’ hexagons (with the flow reversed). Thus we have a transcritical bifurcation to 
hexagons, implying the existence of subcritical convection. 

For a field strength #I = 110, the appropriate value of A, is 4.4. The results show that 
rolls are preferred over hexagons at values of the Rayleigh number 1.02, 1.05, 1.1, 1.25 
and 1.5 times critical. Thus although we know from the lack of up-down symmetry 
in the problem that hexagons must be preferred at onset, stability is transferred to 
rolls at very low amplitude. It can easily be shown from the relevant amplitude 
equations for the interaction of rolls and hexagons that if the degree of asymmetry in 
the problem is e, and rolls are stable when e = 0, then the range of Rayleigh numbers 
for which hexagons are stable is of order e2. Thus it is not surprising that hexagons 
are not found when the magnetic field is weak, in which case the departure of the 
system from the Boussinesq case is small. 

These rolls become unstable to the oscillatory instability (Busse 1972) as the 
Rayleigh number is increased. This instability gives the rolls a wavy appearance, and 
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RGURE 6. The oscillatory instability of rolls. Contours of the vertical velocity at the middle of the 
layer, at intervals of 2.5 time units. Solid (dashed) lines indicate descending (rising) fluid, and the 
parameter values are /3 = 110, R = 1920, ,Ix = 4.4, ;iB = A x / $ .  

is illustrated in figure 6 for R = 1920 = lS&. The period of the oscillation is 16.4 and 
the modulation here takes the form of a standing wave (though travelling waves may 
be possible for other aspect ratios). The oscillations involve the interaction of rolls 
with horizontal dependence cos kx and a mode proportional to sin kx cos ky$/2 .  
Since this instability is well known and does not depend on the magnetic field or the 
compressibility of the fluid, we do not investigate it further here. For R = 1.25R, the 
oscillations are smaller in amplitude, and for R = 1.1& and R = 1.05& the rolls are 
stable. 

The strong-field regime was studied by fixing the Rayleigh number at R = 20000, 
for which the preferred wavelength for rolls is close to 1 and the critical value of p 
is 27.1. For p = 30.2 = l.lpc, stable hexagons were found. This solution is shown in 
figure 7: the individual plumes are almost circular but they lie on a hexagonal lattice. 
These are ‘up’ hexagons, i.e. they have the same topology as the squares described 
in $4.2, with isolated upflows and connected downflows. All of the hexagonal and 
square solutions we have found exhibit this topological structure, which seems to be 
a general feature of convection in a stratified fluid (Stein & Nordlund 1989; Cattaneo 
et aE. 1991) and is consistent with the granulation pattern observed on the surface 
of the Sun. An obvious explanation of this effect is that in a stratified fluid a rising 
plume expands horizontally, while sinking plumes contract; a pattern of ‘up’ hexagons 
allows for horizontal expansion in isolated upflows near the top of the layer. 

When the amplitude of convection is increased by reducing the field strength to 
p = 34 = 1.28,, these hexagons are modulated by a slow small-amplitude oscillation, 
of period 105. During this oscillation, the pattern changes from a regular hexagonal 
pattern to a more rectangular pattern. Figure 8 illustrates this behaviour, showing 
contours of the vertical velocity at the hexagonal and rectangular phases of the 
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FIGURE 7. The steady hexagonal planform. Contours of the vertical velocity at the middle of 
the layer. Four of the computational boxes are shown in order to show the pattern more clearly. 
Parameter values are f i  = 30, R = 20000, Ax = 2, A, = AX/d. 

FIGURE 8. The oscillatory instability of hexagons at (a) the hexagonal and ( b )  the rectangular phase 
of the cycle. Contours of the vertical velocity at the middle of the layer. Four of the computational 
boxes are shown in order to show the pattern more clearly. Parameter values are f l  = 34, R = 20000, 
1, = 2, i, = Ax/@. 

oscillation. This instability involves a mode of the form sinky$/2, in the notation 
of (4.5). 

5. Oscillatory magnetoconvection ([= 0.1) 
5.1. Planforms for  weakly nonlinear oscillatory convection with square symmetry 

In order to be able to interpret our numerical results in the oscillatory case, it 
is essential to understand the possible planforms that can occur at an oscillatory 
bifurcation. We restrict attention to planforms that are periodic on a square lattice, 
that is, those which can occur in our numerical experiments with a square box and 
periodic boundary conditions. The relevant planforms have been found by Swift 
(1988) for the case of interacting standing waves, and Silber & Knobloch (1991) for 
the more general case including travelling waves. The main results of these papers 
are summarized below. 

At the onset of convection in a square box, the solution can be written as a 
combination of four travelling waves in the positive-x, negative-x, positive-y and 
negative-y directions. The horizontal dependence of any of the physical variables can 
be represented by a planform function 

+ y+e'(mt-kY) + y-ei(ot+ky) (5.1) h(x, y) = Re (x+ei(wt-kx) + X-ei(ot+kx) 

where k is the horizontal wavenumber, o is the frequency associated with the Hopf 
bifurcation and x+, x-, y+ and y- are the complex amplitudes of the travelling waves. 
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The relevant amplitude equations for the evolution of the four modes can be written 
to third order in amplitude as 

( 5 4  1 
x+ = x+(A - a/x+12 - b 1 x - 1 ~  - c(ly+I2 + ly-I2)) + dx-y-y,, 
x- = x-(n - alx-j2 - b1x+12 - c(ly+12 + ly-j 2 )) + dx+yPy+, 

j +  = y+@- aIy+l2 - bly-12 - c(1x+I2 + Ix-I2)) + dj-x-x+, 
y- = y-( l -  aly-I2 - hly+I2 - c(1x+I2 + Ix-12)) + dp+x-x+,  

where 1, a, b, c and d are complex constants. These equations (5.2) can be derived 
without any knowledge of the governing partial differential equations. For example, 
for the equation for x+, we simply seek combinations of the four travelling waves 
which are proportional to ei(ot-kx). The symmetry of the problem under reflection 
is used to show that the coefficients of the y+ and y- terms in the x+ equation are 
equal, and the symmetry under rotation through n/2  can then be used to deduce the 
evolution equations for the other three waves. Note that the amplitude equations 
include a phase interaction, represented by the last term in (5.2). 

The possible planforms are combinations of travelling waves or standing waves in 
the x- and y-directions, and can be found by seeking stationary solutions of (5.2). 
These are: 
1. Travelling rolls: a travelling wave in one direction only, e.g. x+ # 0: x- = y+ = 
y- = 0. 
2. x+ = x- # 0, 
y+ = y- = 0. 
3. Travelling squares: travelling waves in both x- and y-directions, e.g. x+ = y+ # 0, 
x- = y- = 0. 
4. Standing squares: standing waves in both directions, in phase, x+ = x- = y+ = 

Y- f 0. 
5 .  Alternating rolls: standing waves in both directions, out of phase, x+ = x- = 
iy+ = iy- # 0. 

For certain parameter values, a combination of unequal standing waves exists, but 
this solution is always unstable. The stability of these solutions depends in a highly 
complicated way on the coefficients A, a, b, c and d (Silber & Knobloch 1991). In 
some cases, more than one planform may be stable, while in others, no planform is 
stable even though all the bifurcations are supercritical. It is possible for convection 
to be quasi-periodic or even chaotic at onset, for certain parameter values, in which 
case solutions 2, 4 and 5 bifurcate supercritically but are unstable. 

The coefficients A, a, b, c and d can be found for oscillatory Boussinesq magneto- 
convection by substituting the four linear travelling waves (5.1) into the Boussinesq 
equations and continuing a weakly nonlinear analysis up to third order in the ampli- 
tudes. This work has recently been done using computer algebra (Clune & Knobloch 
1994), with the result that alternating rolls are found to be stable over a wide range of 
parameter values. The analogous calculation restricted to two dimensions, allowing 
only travelling rolls and standing rolls (equivalent to obtaining a and b in equations 
(5.2)), was carried out by Matthews & Rucklidge (1993), with the result that either 
travelling rolls or standing rolls can be stable, depending on the parameters. 

5.2. Numerical results ,for oscillatory magnetoconvection 
For oscillatory convection, the argument in favour of a hexagonal planform at onset 
no longer applies, since the oscillation removes the distinction between ‘up’ and ‘down’ 
hexagons. For simplicity we only consider the case Ax = A,, allowing the five possible 
planforms for oscillatory convection with square symmetry discussed above. For most 

Standing rolls: a standing wave in one direction only, e.g. 
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10000 I+ __-- +J: 

A x  B R Result 

1.0 110 
1.0 32 
1.0 32 
1.0 11 
1.0 5.5 
1.0 5.5 
1.0 4.5 
1.0 4.2 
1.0 4.3 
1.0 4.0 

8280 
7800 
9000 

10108 
14388 
19000 
30000 
30000 
43200 
43200 

alternating rolls 
alternating rolls 
alternating rolls 
travelling rolls and alternating rolls 
travelling rolls and alternating rolls 
travelling rolls 
travelling rolls and alternating rolls, both with oscillation 
travelling rolls and alternating rolls 
travelling rolls and alternating rolls, both with oscillation 
travelling rolls and alternating rolls 

2.0 110 2280 alternating rolls 
2.0 32 2222 alternating rolls 
2.0 32 3000 alternating rolls 

TABLE 4. Summary of runs for oscillatory convection with 1, = ,Iy. 

t 
X f  

I 

I I I I I I 

128 64 32 16 8 4 

P 
FIGURE 9. Oscillatory magnetoconvection, [ = 0.1. Plus signs indicate where alternating rolls are 
stable, crosses where travelling rolls are stable and asterisks where both patterns are stable. Both 
solutions are stable over a wide range of parameter values. The solid line is the linear stability 
boundary for I ,  = 1. 

of our calculations, we choose a fixed box size R, = 1, = 1. As in the steady case, 
this is appropriate for a relatively strong magnetic field, which leads to convection in 
narrow cells. For a weaker magnetic field the preferred cell width is wider, but we 
have checked that this does not qualitatively affect the preferred planform by doing a 
few runs with Ax = Aye= 2. Figure 9 shows the linear stability curve for the oscillatory 
case with 1, = 1. As in the steady case, the two regimes where convection is limited 
predominantly by diffusion and by the magnetic field are clear. The results of the 
simulations are summarized in table 4 and figure 9. 

For the case of a moderate magnetic field, the behaviour for convection restricted 
to two dimensions is a standing wave (Hurlburt et al. 1989). Our three-dimensional 
results show that for p = 110 and p = 32, the preferred planform near onset is the 
‘alternating rolls’ pattern described above and by Silber & Knobloch (1991). The 
alternating roll planform can be thought of as a standing wave in the x-direction plus 
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a standing wave in the y-direction which is of the same amplitude but has a phase 
difference of n/2. The planform function, describing the horizontal dependence of the 
vertical velocity or the temperature, is proportional to cos kx sin wt + cos ky cos wt, 
and the horizontal velocity components u, v are proportional to sin kx sin wt and 
sin ky cos ot respectively. Thus the kinetic energy averaged over the layer is constant 
in time. The appearance of the convection pattern is of rolls aligned with the y-axis 
at t = 0, squares at a time 1/8 of the period, and rolls aligned with the x-axis at 
1/4 of the period. The alternating rolls are symmetric under an advance of 1/4 of 
a period in time and a rotation through 90” (note that this is the same symmetry 
as that of the alternating pulsating wave shown in figure 3).  At a fixed point on 
the upper surface of the box, the velocity vector appears to rotate (in a clockwise or 
anti-clockwise direction depending on the point chosen). Thus Swift (1988) referred 
to this solution as a ‘rotating wave’. Figure 10 shows the alternating roll solution at 
four stages in its cycle, for j? = 32, R = 7800. The period of the oscillation in this 
case is 4.0. The qualitative behaviour when the box size is increased to 1, = Ay = 2 is 
the same: alternating rolls were found for p = 110 and p = 32. 

This result that alternating rolls are stable over a wide range of parameter values is 
in qualitative agreement with the recent analytical work of Clune & Knobloch (1994), 
who used computer algebra to compute the coefficients of the weakly nonlinear 
amplitude equations (5.2) for Boussinesq magnetoconvection. Exact agreement is 
not to be expected, first because the weakly nonlinear analysis is only valid in a 
small region of parameter space, and secondly because our computations are non- 
Boussinesq. 

The almost ubiquitous occurrence of alternating rolls may be explained by the 
following physical argument : overturning two-dimensional convection in, say, the 
(x, 2)-plane winds up the magnetic field in that plane. The distorted magnetic field 
resists the motion, leading to oscillations in the form of a standing wave in the 
two-dimensional problem. In three dimensions, however, the distorted magnetic field 
provides less resistance to motion in the (y, 2)-plane than to motion in the (x, z)-plane, 
so the fluid motions grow in the (y, z)-plane and decay in the (x, z)-plane. The field 
then becomes distorted in the (y, 2)-plane and ‘unwound’ in the (x, z)-plane, so that 
motion then reverts to the (x, z)-plane. 

For a stronger magnetic field, we find that more than one planform can be stable. 
For p = 11 with R = 10108 = 1.2&, alternating rolls were found when the usual 
procedure of starting the calculation from a small perturbation from the polytropic 
equilibrium was followed. However, when the system was started from an initial 
condition of a travelling wave, this state was found to be stable to three-dimensional 
disturbances. The travelling wave was obtained by using a two-dimensional version 
of the code; this was then used as an initial condition for the three-dimensional code, 
after the addition of a perturbation to the temperature field and the velocity field 
in the third direction. It was found that this three-dimensional perturbation decays 
exponentially. 

At p = 5.5, and R = 1.2&, stable travelling rolls were found from the small- 
amplitude initial condition. When the system was started from the alternating roll 
solution obtained from J = 11, this was also found to be stable. In this case, 
the exponential decay of the disturbance was measured by the degree of left-right 
asymmetry in the second and third Fourier modes of the vertical velocity. 

This result that both alternating rolls and travelling rolls are stable for some 
parameter values is consistent with the bifurcation analysis of Silber & Knobloch 
(1991) and Clune & Knobloch (1994), and complicates the numerical procedure of 



300 P. C. Matthews, M .  R. E. Proctor and N. 0. Weiss 

FIGURE 10. Alternating rolls, shown at intervals of 1/8 of the cycle. Arrows show velocity 
components in the plane of each of the three faces, and shading denotes density. 

seeking solutions, since merely doing one run from a random initial condition does 
not completely describe the possible behaviour of the system. 

The strong-field regime was studied by fixing the Rayleigh number and varying the 
field strength f i .  For both R = 30000 and R = 43200, the solution obtained from the 
small-amplitude initial condition was travelling rolls, although alternating rolls were 
also found to be stable. Both the travelling rolls and the alternating rolls were found 
to be unstable to a three-dimensional oscillation as the field strength was decreased. 
Travelling rolls are stable at R = 43200 and /l = 4, but when p is raised to 4.3 the 
travelling rolls become unstable to an oscillatory transverse motion. Figure 11 shows 
contours of the vertical velocity during just under one half of this oscillation. The 
mode of instability has a horizontal dependence of cos kx cos ky ,  and the instability 
seems to take the form of a standing wave in the y-direction. The period of this 
modulation is 92, much greater than the period of the travelling waves themselves 
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(b) 

FIGURE 11. Modulated travelling rolls. Contours of the vertical velocity at the middle of the layer, at 
intervals of 11.0 time units. Solid (dashed) lines indicate descending (rising) fluid, and the parameter 
values are /3 = 4.3, R = 43200, 1, = A, = 1. 

which is only 2.2. The period of the instability decreases as its amplitude increases, 
suggesting that the bifurcation may be of pitchfork type. 

When the field strength and the Rayleigh number are increased still further, the 
preferred mode for convection switches to rolls aligned diagonally with respect to the 
box, with a wavenumber greater by a factor of & than that of the rolls aligned with 
the box. Unlike the steady case discussed in $4.2 however, there are no quadratic 
resonant terms, because in the oscillatory case the two linear modes have different 
frequencies. 

6. Conclusions and discussion 
We have carried out a thorough investigation of preferred planforms for mildly 

nonlinear compressible convection in a vertical magnetic field, over a wide range 
of parameter values. The most striking and significant feature of our results is the 
range of ordered patterns for steady and, especially, time-dependent motion. When 
convection is steady and the field is weak, a planform of two-dimensional rolls is 
preferred over squares or hexagons. These rolls can be susceptible to a shear flow 
instability, which can in turn lead to three-dimensional flow, since the shear flow 
suppresses the convective velocity in its own plane but does not affect the orthogonal 
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rolls. In a stronger magnetic field, the non-Boussinesq density fluctuations are greater, 
leading to a preference for three-dimensional convection at onset. This flow takes the 
form of isolated upflows and connected downflows, and occurs with a planfom of 
squares Or hexagons, depending on the aspect ratio chosen for the box. An interesting 
question, hard to tackle numerically or analytically, is which of squares and hexagons 
would be preferred in an infinite layer. In the case of small ?,, when magnetoconvection 
is oscillatory, we find three-dimensional flow in the form of alternating rolls in the 
weak-field regime, while for stronger fields both alternating rolls and two-dimensional 
travelling rolls are stable at the same parameter values. Each of these solutions 
becomes unstable as the amplitude of convection is increased. 

The interpretation of these results relies heavily on low-order models. Planform 
selection can be described by evolution equations with appropriate symmetries, and 
the preference for three-dimensional convection in a strong magnetic field, which 
does not occur in the Boussinesq approximation, is a consequence of compressibility, 
which leads to resonant terms in the amplitude equations for a stratified layer. 
When convection sets in at a Hopf bifurcation, our results can be compared with 
the amplitude equations derived by Clune & Knobloch (1994). Exact agreement 
is not to be expected, since they calculated the coefficients for incompressible flow. 
Nevertheless, there is considerable qualitative agreement; both studies show stable 
alternating rolls over a wide range of parameter values. Several questions requiring 
further work can be proposed. For instance, the complicated global bifurcations 
that lead to the appearance of two- and three-dimensional pulsating waves are being 
analysed by Rucklidge & Matthews (1995a, b). In the oscillatory case, a transition 
to steady convection occurs as the magnetic field strength is decreased. There is 
a codimension-two point at which the linear problem has two zero eigenvalues, 
where the steady and oscillatory branches meet. In two dimensions, the sequence 
of bifurcations leading from standing waves to steady convection is described by 
the Takens-Bogdanov normal form equations, and is well understood (e.g. Proctor 
& Weiss 1982; Dangelmayr & Knobloch 1987). In three dimensions, the relevant 
transition is from alternating rolls to steady rolls, and the bifurcation sequence remains 
to be explored. 

The ordered patterns of behaviour that occur in the mildly nonlinear regime 
give way to chaos as the thermal forcing is increased. As might be expected, this 
transition occurs much earlier for three-dimensional convection than it does when 
the velocity and magnetic field are constrained to be two-dimensional. The natural 
extension of our work is to continue to larger Rayleigh numbers and to study the 
structure of chaotic magnetoconvection. To demonstrate what happens, we show 
here two examples of spatiotemporal chaos, or weak turbulence (Manneville 1991), 
in magnetoconvection at a Rayleigh number of 10000, with ( = 0.1 and A, = A, = 2, 
with f i  = 113 and f i  = 23 (figure 12). The nature of this highly complicated time- 
dependent convection is best appreciated on a video, from which it is clear that 
these solutions retain some of the character of alternating rolls, with rapid changes 
in the direction of the flow which compress the magnetic field into sheets and tubes 
alternately. 

Of particular interest is the question of the spatial structure of a turbulent magnetic 
field. Does it essentially fill the whole space, as argued by Vainshtein et al. (1993), or 
does it form isolated magnetic structures in the form of flux sheets or tubes as found 
by Nordlund et al. (1994)? A satisfactory answer to this important and controversial 
question will not be reached until computing power increases to the point where a 
large number of simulations can be carried out at high resolution. 
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FIGURE 12. Aperiodic magnetoconvection (a) at = 113, R = 10000 and (b)  at f i  = 23, R = 10000. 
The shading indicates the magnitude of the magnetic field strength. 

So far we have only considered a shallow stratified layer with an imposed field that 
is vertical. This configuration is too simple to explain behaviour in a sunspot. We 
are currently extending this work in order to investigate magnetoconvection in more 
strongly stratified layers, which model more closely the structure of a sunspot umbra. 
The stratification introduces new physical effects ; convection may be oscillatory at the 
top of the layer and steady at the bottom due to the variation of i with depth (Weiss et 
al. 1990). Our preliminary results confirm that convection is three-dimensional in this 
case, as one might expect since increasing the stratification increases the asymmetry 
between the top and bottom of the layer and hence increases the preference for 
squares or hexagons, as discussed in $4.2. 

The results of the present work are strongly influenced by our choice of a vertical 
magnetic field, which imposes square symmetry. Although the mean field is vertical 
at the centre of a sunspot, its inclination to the vertical increases to 45" at the edge of 
the umbra and to 70" at the outer boundary of the penumbra. We plan to study the 
case of an inclined field in three dimensions, extending the linear theory of Matthews 
et aE. (1992) and the two-dimensional computations of Hurlburt, Matthews & Proctor 
(1995). We expect a transition from travelling rolls with axes normal to the plane of 
the inclined field to rolls with axes aligned with the field as the angle of inclination 
from the vertical is increased, but the manner of this transition is not clear. Sunspot 
penumbrae present a greater challenge. Their complicated filamentary structure is 
apparently associated with a new convective mode that carries heat inward from the 
surrounding plasma (Rucklidge, Schmidt & Weiss 1995). This process is intrinsically 
three-dimensional but it is not obvious how it can be modelled. 

We are grateful to Fausto Cattaneo for generously letting us take over his hydro- 
dynamic code and for advice on numerical methods, to Alastair Rucklidge for many 
enlightening comments and suggestions, and to Derek Brownjohn for producing 
some of the figures. We have also had helpful discussions with Neal Hurlburt, Edgar 
Knobloch, Mary Silber and Jim Swift. Financial support was provided by SERC and 
its successor PPARC, and supercomputer time by ULCC. 
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